
INTELLIGENT SYSTEMS (CSE-303-F) 
 

Section A 
 

Tic Tac Toe Game playing strategies 



Tic–Tac–Toe game playing 
 
 Two players  

 human  
 computer.   

 The objective is to write a computer program in such a 
way that computer wins most of the time.  

 Three approaches are presented to play this game 
which increase in   
 Complexity 
 Use of generalization 
 Clarity of their knowledge 
 Extensibility of their approach 

 These approaches will move towards being 
representations of what we will call AI techniques. 



Tic Tac Toe Board- (or Noughts and crosses, Xs and Os)  

  

1 2 3 

4 5 6 

7 8 9 

positions 

It is two players, X and O, game who take turns marking the 

spaces in a 3×3 grid. The player who succeeds in placing three 

respective marks in a horizontal, vertical, or diagonal row wins 

the game.  



Approach 1 

Data Structure 

 Consider a Board having nine elements vector. 

 Each element will contain 

● 0  for blank  

● 1  indicating X player move 

● 2  indicating O player move 

 Computer may play as X or O player.  

 First player who so ever is always plays X. 

 



Move Table  MT 

 MT is a vector of 39 elements, each element of 
which is a nine element vector representing board 
position.   

 Total of 39 (19683) elements in MT 
 

 Index Current Board position  New Board position  

 0  000000000   000010000  
 1  000000001   020000001   
 2  000000002    000100002  
 3  000000010    002000010  
  : 
  :  
     
  



Algorithm 

 To make a move, do the following: 

 View the vector (board) as a ternary number  and 
convert it to its corresponding decimal number. 

 Use the computed number as an index into the MT and 
access the vector stored there. 

● The selected vector represents the way the board will look 
after the move.  

 Set board equal to that vector. 

 



Comments 
 

 Very efficient in terms of time but has several 
disadvantages. 

 Lot of space to store the move table. 

 Lot of work to specify all the entries in move table. 

 Highly error prone as the data is voluminous. 

 Poor extensibility  

● 3D tic-tac-toe  = 327 board position to be stored. 

 Not intelligent at all. 

 



Approach 2 

 

 Data Structure 

 Board: A nine-element vector representing the board: B[1..9] 

 Following conventions are used 

  2 - indicates blank 

  3 - X 

  5 - 0 

 Turn: An integer   

  1 - First move 

  9 - Last move 



Procedures Used 
 Make_2   Tries to make valid 2 

 
 Make_2 first tries to play in the center if free and returns 

5 (square number).   
 If not possible, then it tries the various suitable non 

corner square and returns square number. 
 

 Go(n)  makes a move in square ‘n’ which is blank 
represented by 2. 



Procedure - PossWin 

 PossWin (P)  Returns  
 

 0, if player P cannot win in its next move, 
 otherwise the number of square that constitutes a 

winning move for P. 
 

 Rule 
 If PossWin (P) = 0 {P can not win} then find whether 

opponent can win.  If so, then block it.  
 



Strategy used by PosWin 

 PosWin checks one at a time, for each rows /columns 
and diagonals as follows. 

 

 If  3 * 3 * 2  = 18 then player X can win  

 else if 5 * 5 * 2 = 50 then player O can win 

 

 These procedures are used in the algorithm on the 
next slide. 

 



Algorithm 

 Assumptions 

 The first player always uses symbol X. 

 There are in all 8 moves in the worst case. 

 Computer is represented by  C and Human is 
represented by  H. 

 Convention used in algorithm on next slide  

 If C plays first (Computer plays X, Human plays O) - Odd 
moves 

 If H plays first (Human plays X, Computer plays O) - Even 
moves 

 For the sake of clarity, we use C and H. 



Algo - Computer plays first – C plays odd moves 
 Move 1:   Go (5)  

 Move 2: H plays 

 Move 3: If B[9] is blank, then Go(9) else  Go(3) {make 2}  

 Move 4: H plays 

 Move 5: {By now computer has played 2 chances}   

 If PossWin(C) then {won} Go(PossWin(C))  

 else {block H} if PossWin(H) then Go(PossWin(H)) else if B[7] is 
blank then  Go(7) else Go(3) 

 Move 6: H plays 

 Moves 7 & 9 :  

 If PossWin(C) then {won} Go(PossWin(C))  

 else {block H}  if PossWin(H) then Go(PossWin(H)) else 
Go(Anywhere) 

 Move 8: H plays  



Algo - Human plays first – C plays even moves 
 Move 1:   H plays  
 Move 2: If B[5] is blank, then Go(5) else  Go(1) 
 Move 3: H plays 
 Move 4: {By now H has played 2 chances}  

 If PossWin(H) then {block H} Go (PossWin(H))  
 else Go (Make_2) 

 Move 5: H plays 
 Move 6: {By now both have played 2 chances}   

 If PossWin(C) then {won} Go(PossWin(C))  
 else {block H}  if PossWin(H) then Go(PossWin(H)) else 

Go(Make_2)  
 Moves 7 & 9 : H plays 
 Move 8: {By now computer has played 3 chances}  

 If PossWin(C) then {won} Go(PossWin(C))  
 else {block H}  if PossWin(H) then Go(PossWin(H)) else 

Go(Anywhere)   
 



Complete Algorithm – Odd moves or even moves for C 
playing first or second 

 Move 1:   go (5)  
 Move 2: If B[5] is blank, then Go(5) else  Go(1) 
 Move 3: If B[9] is blank, then Go(9) else  Go(3) {make 2}  
 Move 4: {By now human (playing X) has played 2 chances} If PossWin(X) 

then {block H} Go (PossWin(X)) else Go (Make_2) 
 Move 5: {By now computer has played 2 chances}  If PossWin(X) then 

{won} Go(PossWin(X)) else {block H}  if PossWin(O) then Go(PossWin(O)) 
else if B[7] is blank then  Go(7) else Go(3) 

 Move 6: {By now both have played 2 chances}  If PossWin(O) then {won} 
Go(PossWin(O)) else {block H}  if PossWin(X) then Go(PossWin(X)) else 
Go(Make_2)  

 Moves 7 & 9 : {By now human (playing O) has played 3 chances} If 
PossWin(X)  then {won} Go(PossWin(X)) else {block H}  if PossWin(O) 
then Go(PossWin(O)) else Go(Anywhere) 

 Move 8: {By now computer has played 3 chances} If PossWin(O) then 
{won} Go(PossWin(O)) else {block H}  if PossWin(X) then Go(PossWin(X)) 
else Go(Anywhere)   
 



Comments 

 Not as efficient as first one in terms of time.   

 Several conditions are checked before each move. 

 It is memory efficient. 

 Easier to understand & complete strategy has been 
determined in advance 

 Still can not generalize to 3-D. 

  

 



Approach 3 
 Same as approach 2 except for one change in the 

representation of the board. 

 Board is considered to be a magic square of size 3 X 3 
with 9 blocks numbered by numbers indicated by magic 
square. 

 This representation makes process of checking for a 
possible win more simple.  

 



Board Layout – Magic Square 
 Board Layout as magic square. Each row, column 

and diagonals add to 15. 

 
 
   8  3  4  
    
 
   1  5  9  
    
 

   6  7  2  

Magic Square 



Strategy for possible win for one player 

 Maintain the list of each player’s blocks in which he 
has played. 

 Consider each pair of blocks that player owns. 

 Compute difference D between 15 and the sum of the 
two blocks. 

 If D < 0 or D > 9 then  

 these two blocks are not collinear and so can be 
ignored  

 otherwise if the block representing difference is blank 
(i.e., not in either list) then a move in that block will 
produce a win. 



Working Example of algorithm 
 Assume that the following lists are maintained up to 

3rd  move. 
 Consider the magic block shown in slide 18.  

 First Player X (Human) 
 

   8 3      
  

 Second Player O (Computer) 
 

   5       
   



Working – contd.. 

 Strategy is same as in approach 2 

 First check if computer can win.   

 If not then check if opponent  can win.   

 If so, then block it and proceed further. 

 Steps involved in the play are: 

 First chance, H plays in  block numbered as 8 

 Next C plays in block numbered as 5 

 H plays in block numbered 3 

 Now there is a turn of computer.   



Working – contd.. 
 Strategy by computer: Since H has played two 

turns and C has played only one turn, C checks if 
H can win or not.  

 Compute sum of blocks played by H  

 S = 8 + 3 = 11  

 Compute D = 15 – 11 = 4 

 Block 4 is a winning block for H.  

 So block this block and play in block numbered 4.  

 The list of C gets updated with block number 4 as follows: 

  H    8   3   C     5    4  
  



Contd.. 
 Assume that H plays in block numbered 6. 

 Now it’s a turn of C. 
 C checks, if C can win as follows:  

 Compute sum of blocks played by C  

 S = 5 + 4 = 9  

 Compute D = 15 – 9 = 6 

 Block 6 is not free, so C can not win at this turn.  

 Now check if H can win. 
 Compute sum of new pairs (8, 6) and (3, 6) from the list of H    

 S = 8 + 6 = 14 

 Compute D = 15 – 14 = 1 

 Block 1 is not used by either player, so C plays in block numbered 
as 1 



Contd.. 
 The updated lists at 6th move looks as follows: 

 First Player H 

   8 3 6    

 

 Second Player C 

   5 4   1  

 

 Assume that now H plays in 2. 

 Using same strategy, C checks its pair (5, 1) and (4, 1) 
and finds bock numbered as 9 {15-6 = 9}. 

 Block 9 is free, so C plays in 9 and win the game. 



Comments 
 
 This program will require  more time than two others 

as 

 it has to search a tree representing all possible move 
sequences before making each move. 

  This approach is extensible to handle 

 3-dimensional tic-tac-toe. 

 games more complicated than tic-tac-toe.  

 



3D Tic Tac Toe (Magic cube) 
 All lines parallel to the faces of a cube, and all 4 

triagonals sum correctly to 42 defined by 

   S = m(m3 + 1)/2 , where m=3  

 No planar diagonals of outer surfaces sum to 42. so 
there are probably no magic squares in the cube. 

8 24 10 15 1 26 19 17 6 

12 7 23 25 14 3 5 21 16 

22 11 9 2 27 13 18 4 20 



 8              24                  10 

12                  7                 23 

22                 11                9 

15                     1               26 

25                14               3 

  2                 27              13 

19                17                   6 

  5                21               16 

18                4                20 

8 24 10 15 1 26 19 17 6 

12 7 23 25 14 3 5 21 16 

22 11 9 2 27 13 18 4 20 

•  Magic Cube has 6 outer 

and 3 inner  and 2 diagonal 

surfaces 

• Outer 6 surfaces are not 

magic squares as diagonals 

are not added to 42. 

• Inner 5 surfaces are magic 

square.  

 


