
INTELLIGENT SYSTEMS (CSE-303-F)

Section A

Tic Tac Toe Game playing strategies

Tic–Tac–Toe game playing

 Two players

 human
 computer.

 The objective is to write a computer program in such a
way that computer wins most of the time.

 Three approaches are presented to play this game
which increase in
 Complexity
 Use of generalization
 Clarity of their knowledge
 Extensibility of their approach

 These approaches will move towards being
representations of what we will call AI techniques.

Tic Tac Toe Board- (or Noughts and crosses, Xs and Os)

1 2 3

4 5 6

7 8 9

positions

It is two players, X and O, game who take turns marking the

spaces in a 3×3 grid. The player who succeeds in placing three

respective marks in a horizontal, vertical, or diagonal row wins

the game.

Approach 1

Data Structure

 Consider a Board having nine elements vector.

 Each element will contain

● 0 for blank

● 1 indicating X player move

● 2 indicating O player move

 Computer may play as X or O player.

 First player who so ever is always plays X.

Move Table MT

 MT is a vector of 39 elements, each element of
which is a nine element vector representing board
position.

 Total of 39 (19683) elements in MT

 Index Current Board position New Board position

 0 000000000 000010000
 1 000000001 020000001
 2 000000002 000100002
 3 000000010 002000010
 :
 :

Algorithm

 To make a move, do the following:

 View the vector (board) as a ternary number and
convert it to its corresponding decimal number.

 Use the computed number as an index into the MT and
access the vector stored there.

● The selected vector represents the way the board will look
after the move.

 Set board equal to that vector.

Comments

 Very efficient in terms of time but has several
disadvantages.

 Lot of space to store the move table.

 Lot of work to specify all the entries in move table.

 Highly error prone as the data is voluminous.

 Poor extensibility

● 3D tic-tac-toe = 327 board position to be stored.

 Not intelligent at all.

Approach 2

 Data Structure

 Board: A nine-element vector representing the board: B[1..9]

 Following conventions are used

 2 - indicates blank

 3 - X

 5 - 0

 Turn: An integer

 1 - First move

 9 - Last move

Procedures Used
 Make_2 Tries to make valid 2

 Make_2 first tries to play in the center if free and returns

5 (square number).
 If not possible, then it tries the various suitable non

corner square and returns square number.

 Go(n) makes a move in square ‘n’ which is blank
represented by 2.

Procedure - PossWin

 PossWin (P) Returns

 0, if player P cannot win in its next move,
 otherwise the number of square that constitutes a

winning move for P.

 Rule
 If PossWin (P) = 0 {P can not win} then find whether

opponent can win. If so, then block it.

Strategy used by PosWin

 PosWin checks one at a time, for each rows /columns
and diagonals as follows.

 If 3 * 3 * 2 = 18 then player X can win

 else if 5 * 5 * 2 = 50 then player O can win

 These procedures are used in the algorithm on the
next slide.

Algorithm

 Assumptions

 The first player always uses symbol X.

 There are in all 8 moves in the worst case.

 Computer is represented by C and Human is
represented by H.

 Convention used in algorithm on next slide

 If C plays first (Computer plays X, Human plays O) - Odd
moves

 If H plays first (Human plays X, Computer plays O) - Even
moves

 For the sake of clarity, we use C and H.

Algo - Computer plays first – C plays odd moves
 Move 1: Go (5)

 Move 2: H plays

 Move 3: If B[9] is blank, then Go(9) else Go(3) {make 2}

 Move 4: H plays

 Move 5: {By now computer has played 2 chances}

 If PossWin(C) then {won} Go(PossWin(C))

 else {block H} if PossWin(H) then Go(PossWin(H)) else if B[7] is
blank then Go(7) else Go(3)

 Move 6: H plays

 Moves 7 & 9 :

 If PossWin(C) then {won} Go(PossWin(C))

 else {block H} if PossWin(H) then Go(PossWin(H)) else
Go(Anywhere)

 Move 8: H plays

Algo - Human plays first – C plays even moves
 Move 1: H plays
 Move 2: If B[5] is blank, then Go(5) else Go(1)
 Move 3: H plays
 Move 4: {By now H has played 2 chances}

 If PossWin(H) then {block H} Go (PossWin(H))
 else Go (Make_2)

 Move 5: H plays
 Move 6: {By now both have played 2 chances}

 If PossWin(C) then {won} Go(PossWin(C))
 else {block H} if PossWin(H) then Go(PossWin(H)) else

Go(Make_2)
 Moves 7 & 9 : H plays
 Move 8: {By now computer has played 3 chances}

 If PossWin(C) then {won} Go(PossWin(C))
 else {block H} if PossWin(H) then Go(PossWin(H)) else

Go(Anywhere)

Complete Algorithm – Odd moves or even moves for C
playing first or second

 Move 1: go (5)
 Move 2: If B[5] is blank, then Go(5) else Go(1)
 Move 3: If B[9] is blank, then Go(9) else Go(3) {make 2}
 Move 4: {By now human (playing X) has played 2 chances} If PossWin(X)

then {block H} Go (PossWin(X)) else Go (Make_2)
 Move 5: {By now computer has played 2 chances} If PossWin(X) then

{won} Go(PossWin(X)) else {block H} if PossWin(O) then Go(PossWin(O))
else if B[7] is blank then Go(7) else Go(3)

 Move 6: {By now both have played 2 chances} If PossWin(O) then {won}
Go(PossWin(O)) else {block H} if PossWin(X) then Go(PossWin(X)) else
Go(Make_2)

 Moves 7 & 9 : {By now human (playing O) has played 3 chances} If
PossWin(X) then {won} Go(PossWin(X)) else {block H} if PossWin(O)
then Go(PossWin(O)) else Go(Anywhere)

 Move 8: {By now computer has played 3 chances} If PossWin(O) then
{won} Go(PossWin(O)) else {block H} if PossWin(X) then Go(PossWin(X))
else Go(Anywhere)

Comments

 Not as efficient as first one in terms of time.

 Several conditions are checked before each move.

 It is memory efficient.

 Easier to understand & complete strategy has been
determined in advance

 Still can not generalize to 3-D.

Approach 3
 Same as approach 2 except for one change in the

representation of the board.

 Board is considered to be a magic square of size 3 X 3
with 9 blocks numbered by numbers indicated by magic
square.

 This representation makes process of checking for a
possible win more simple.

Board Layout – Magic Square
 Board Layout as magic square. Each row, column

and diagonals add to 15.

 8 3 4

 1 5 9

 6 7 2

Magic Square

Strategy for possible win for one player

 Maintain the list of each player’s blocks in which he
has played.

 Consider each pair of blocks that player owns.

 Compute difference D between 15 and the sum of the
two blocks.

 If D < 0 or D > 9 then

 these two blocks are not collinear and so can be
ignored

 otherwise if the block representing difference is blank
(i.e., not in either list) then a move in that block will
produce a win.

Working Example of algorithm
 Assume that the following lists are maintained up to

3rd move.
 Consider the magic block shown in slide 18.

 First Player X (Human)

 8 3

 Second Player O (Computer)

 5

Working – contd..

 Strategy is same as in approach 2

 First check if computer can win.

 If not then check if opponent can win.

 If so, then block it and proceed further.

 Steps involved in the play are:

 First chance, H plays in block numbered as 8

 Next C plays in block numbered as 5

 H plays in block numbered 3

 Now there is a turn of computer.

Working – contd..
 Strategy by computer: Since H has played two

turns and C has played only one turn, C checks if
H can win or not.

 Compute sum of blocks played by H

 S = 8 + 3 = 11

 Compute D = 15 – 11 = 4

 Block 4 is a winning block for H.

 So block this block and play in block numbered 4.

 The list of C gets updated with block number 4 as follows:

 H 8 3 C 5 4

Contd..
 Assume that H plays in block numbered 6.

 Now it’s a turn of C.
 C checks, if C can win as follows:

 Compute sum of blocks played by C

 S = 5 + 4 = 9

 Compute D = 15 – 9 = 6

 Block 6 is not free, so C can not win at this turn.

 Now check if H can win.
 Compute sum of new pairs (8, 6) and (3, 6) from the list of H

 S = 8 + 6 = 14

 Compute D = 15 – 14 = 1

 Block 1 is not used by either player, so C plays in block numbered
as 1

Contd..
 The updated lists at 6th move looks as follows:

 First Player H

 8 3 6

 Second Player C

 5 4 1

 Assume that now H plays in 2.

 Using same strategy, C checks its pair (5, 1) and (4, 1)
and finds bock numbered as 9 {15-6 = 9}.

 Block 9 is free, so C plays in 9 and win the game.

Comments

 This program will require more time than two others

as

 it has to search a tree representing all possible move
sequences before making each move.

 This approach is extensible to handle

 3-dimensional tic-tac-toe.

 games more complicated than tic-tac-toe.

3D Tic Tac Toe (Magic cube)
 All lines parallel to the faces of a cube, and all 4

triagonals sum correctly to 42 defined by

 S = m(m3 + 1)/2 , where m=3

 No planar diagonals of outer surfaces sum to 42. so
there are probably no magic squares in the cube.

8 24 10 15 1 26 19 17 6

12 7 23 25 14 3 5 21 16

22 11 9 2 27 13 18 4 20

 8 24 10

12 7 23

22 11 9

15 1 26

25 14 3

 2 27 13

19 17 6

 5 21 16

18 4 20

8 24 10 15 1 26 19 17 6

12 7 23 25 14 3 5 21 16

22 11 9 2 27 13 18 4 20

• Magic Cube has 6 outer

and 3 inner and 2 diagonal

surfaces

• Outer 6 surfaces are not

magic squares as diagonals

are not added to 42.

• Inner 5 surfaces are magic

square.

