

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

Tic Tac Toe Game playing strategies

Lecture 1

Tic-Tac-Toe game playing

- Two players
 - human
 - computer.
- The objective is to write a computer program in such a way that computer wins most of the time.
- Three approaches are presented to play this game which increase in
 - Complexity
 - Use of generalization
 - Clarity of their knowledge
 - Extensibility of their approach
- These approaches will move towards being representations of what we will call AI techniques.

Tic Tac Toe Board- (or Noughts and crosses, Xs and Os)

It is two players, X and O, game who take turns marking the spaces in a 3×3 grid. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game.

Approach 1

Data Structure

- Consider a Board having nine elements vector.
- Each element will contain
 - o for blank
 - 1 indicating X player move
 - 2 indicating O player move
- Computer may play as X or O player.
- First player who so ever is always plays X.

Move Table MT

- MT is a vector of 3⁹ elements, each element of which is a nine element vector representing board position.
- Total of 39 (19683) elements in MT

rrent Board position	New Board position			
00000000	000010000			
00000001	02000001			
00000002	000100002			
00000010	002000010			
	000000001 000000002	00000000 000010000 00000001 02000001 00000002 000100002		

Algorithm

- To make a move, do the following:
 - View the vector (board) as a ternary number and convert it to its corresponding decimal number.
 - Use the computed number as an index into the MT and access the vector stored there.
 - The selected vector represents the way the board will look after the move.
 - Set board equal to that vector.

Comments

- Very efficient in terms of time but has several <u>disadvantages.</u>
 - Lot of space to store the move table.
 - Lot of work to specify all the entries in move table.
 - Highly error prone as the data is voluminous.
 - Poor extensibility
 - 3D tic-tac-toe = 3^{27} board position to be stored.
 - Not intelligent at all.

Approach 2

Data Structure

- **Board**: A nine-element vector representing the board: B[1..9]
- Following conventions are used
 - 2 indicates blank
 - 3 X
 - 5 0
- Turn: An integer
 - 1 First move
 - 9 Last move

Procedures Used

Make_2 → Tries to make valid 2

- Make_2 first tries to play in the center if free and returns 5 (square number).
- If not possible, then it tries the various suitable non corner square and returns square number.
- $Go(n) \leftarrow$ makes a move in square 'n' which is blank represented by 2.

Procedure - PossWin

• **PossWin** (P) \rightarrow Returns

• o, if player P cannot win in its next move,

 otherwise the number of square that constitutes a winning move for P.

• Rule

• If PossWin (P) = o {P can not win} then find whether opponent can win. If so, then block it.

Strategy used by PosWin

- **PosWin** checks one at a time, for each rows /columns and diagonals as follows.
 - If 3 * 3 * 2 = 18 then player X can win
 - else if 5 * 5 * 2 = 50 then player O can win
- These procedures are used in the algorithm on the next slide.

Algorithm

Assumptions

- The first player always uses symbol X.
- There are in all 8 moves in the worst case.
- Computer is represented by C and Human is represented by H.
- Convention used in algorithm on next slide
 - If C plays first (Computer plays X, Human plays O) Odd moves
 - If H plays first (Human plays X, Computer plays O) Even moves
 - For the sake of clarity, we use C and H.

Algo - Computer plays first – C plays odd moves

- Move 1: Go (5)
- Move 2: H plays
- Move 3: If B[9] is blank, then Go(9) else Go(3) {*make 2*}
- Move 4: *H* plays
- Move 5: {By now computer has played 2 chances}
 - If PossWin(C) then *{won}* Go(PossWin(C))
 - else {block H} if PossWin(H) then Go(PossWin(H)) else if B[7] is blank then Go(7) else Go(3)
- Move 6: H plays
- Moves 7 & 9 :
 - If PossWin(C) then *{won}* Go(PossWin(C))
 - else {block H} if PossWin(H) then Go(PossWin(H)) else Go(Anywhere)
- Move 8: H plays

Algo - Human plays first – C plays even moves

- Move 1: H plays
- Move 2: If B[5] is blank, then Go(5) else Go(1)
- Move 3: H plays
- Move 4: {By now H has played 2 chances}
 - If PossWin(H) then {*block H*} Go (PossWin(H))
 - else Go (Make_2)
- Move 5: H plays
- Move 6: {By now both have played 2 chances}
 - If PossWin(C) then *{won}* Go(PossWin(C))
 - else {block H} if PossWin(H) then Go(PossWin(H)) else Go(Make_2)
- Moves 7 & 9 : H plays
- Move 8: {By now computer has played 3 chances}
 - If PossWin(C) then *{won}* Go(PossWin(C))
 - else {block H} if PossWin(H) then Go(PossWin(H)) else Go(Anywhere)

Complete Algorithm – Odd moves or even moves for C playing first or second

- Move 1: go (5)
- Move 2: If B[5] is blank, then Go(5) else Go(1)
- Move 3: If B[9] is blank, then Go(9) else Go(3) {*make 2*}
- Move 4: {*By now human (playing X) has played 2 chances*} If PossWin(X) then {*block H*} Go (PossWin(X)) else Go (Make_2)
- Move 5: {*By now computer has played 2 chances*} If PossWin(X) then {*won*} Go(PossWin(X)) else {*block H*} if PossWin(O) then Go(PossWin(O)) else if B[7] is blank then Go(7) else Go(3)
- Move 6: {*By now both have played 2 chances*} If PossWin(O) then {*won*} Go(PossWin(O)) else {*block H*} if PossWin(X) then Go(PossWin(X)) else Go(Make_2)
- **Moves 7 & 9 : {By now human (playing O) has played 3 chances**} If PossWin(X) then {**won**} Go(PossWin(X)) else {**block H**} if PossWin(O) then Go(PossWin(O)) else Go(Anywhere)
- Move 8: {*By now computer has played 3 chances*} If PossWin(O) then {*won*} Go(PossWin(O)) else {*block H*} if PossWin(X) then Go(PossWin(X)) else Go(Anywhere)

Comments

- Not as efficient as first one in terms of time.
- Several conditions are checked before each move.
- It is memory efficient.
- Easier to understand & complete strategy has been determined in advance
- Still can not generalize to 3-D.

Approach 3

- Same as approach 2 except for one change in the representation of the board.
 - Board is considered to be a magic square of size 3 X 3 with 9 blocks numbered by numbers indicated by magic square.
- This representation makes process of checking for a possible win more simple.

Board Layout – Magic Square

• Board Layout as magic square. Each row, column and diagonals add to 15.

Magic Square

Strategy for possible win for one player

- Maintain the list of each player's blocks in which he has played.
 - Consider each pair of blocks that player owns.
 - Compute difference D between 15 and the sum of the two blocks.
 - If D < o or D > 9 then
 - these two blocks are not collinear and so can be ignored
 - otherwise if the block representing difference is blank (i.e., not in either list) then a move in that block will produce a win.

Working Example of algorithm

- Assume that the following lists are maintained up to 3rd move.
- Consider the magic block shown in slide 18.
 - First Player X (Human)

• Second Player O (Computer)

Working – contd..

- Strategy is same as in approach 2
 - First check if computer can win.
 - If not then check if opponent can win.
 - If so, then block it and proceed further.
- Steps involved in the play are:
 - First chance, H plays in block numbered as 8
 - Next C plays in block numbered as 5
 - H plays in block numbered 3
 - Now there is a turn of computer.

Working – contd..

- Strategy by computer: Since H has played two turns and C has played only one turn, C checks if H can win or not.
 - Compute sum of blocks played by H
 - S = 8 + 3 = 11
 - Compute D = 15 11 = 4
 - Block 4 is a winning block for H.
 - So block this block and play in block numbered 4.
 - The list of C gets updated with block number 4 as follows:

Н	8 3	C	54	

Contd..

- Assume that H plays in block numbered 6.
- Now it's a turn of C.
 - C checks, if C can win as follows:
 - Compute sum of blocks played by C
 - S = 5 + 4 = 9
 - Compute D = 15 9 = 6
 - Block 6 is not free, so C can not win at this turn.
 - Now check if H can win.
 - Compute sum of new pairs (8, 6) and (3, 6) from the list of H
 - S = 8 + 6 = 14
 - Compute D = 15 14 = 1
 - Block 1 is not used by either player, so C plays in block numbered as 1

Contd..

• The updated lists at 6th move looks as follows:

• First Player H

• Second Player C

- Assume that now H plays in 2.
- Using same strategy, C checks its pair (5, 1) and (4, 1) and finds bock numbered as 9 {15-6 = 9}.
- Block 9 is free, so C plays in 9 and win the game.

Comments

- This program will require more time than two others as
 - it has to search a tree representing all possible move sequences before making each move.
- This approach is extensible to handle
 - 3-dimensional tic-tac-toe.
 - games more complicated than tic-tac-toe.

3D Tic Tac Toe (Magic cube)

• All lines parallel to the faces of a cube, and all 4 triagonals sum correctly to 42 defined by

 $S = m(m^3 + 1)/2$, where m=3

• No planar diagonals of outer surfaces sum to 42. so there are probably no magic squares in the cube.

8	24	10	15	1	26	19	17	6
12	7	23	25	14	3	5	21	16
22	11	9	2	27	13	18	4	20

8	24	10	15	1	26	19	17	6
12	7	23	25	14	3	5	21	16
22	11	9	2	27	13	18	4	20

- Magic Cube has 6 outer and 3 inner and 2 diagonal surfaces
- Outer 6 surfaces are not magic squares as diagonals are not added to 42.
- Inner 5 surfaces are magic square.