INTELLIGENT SYSTEMS (CSE-303-F)
Section A
Tic Tac Toe Game playing strategies

Lecture 1

Tic-Tac-Toe game playing

- Two players
- human
- computer.
- The objective is to write a computer program in such a way that computer wins most of the time.
- Three approaches are presented to play this game which increase in
- Complexity
- Use of generalization
- Clarity of their knowledge
- Extensibility of their approach
- These approaches will move towards being representations of what we will call AI techniques.

Tic Tac Toe Board- (or Noughts and crosses, Xs and Os)

It is two players, X and O, game who take turns marking the spaces in a 3×3 grid. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game.

Approach 1

- Data Structure
- Consider a Board having nine elements vector.
- Each element will contain
- o for blank
- 1 indicating X player move
- 2 indicating O player move
- Computer may play as X or O player.
- First player who so ever is always plays X .

Move Table MT

- MT is a vector of 3^{9} elements, each element of which is a nine element vector representing board position.
- Total of $3^{9}(19683)$ elements in MT

Index Current Board position		New Board position
0	000000000	000010000
1	000000001	020000001
2	000000002	000100002
3	000000010	002000010
	$:$	

Algorithm

- To make a move, do the following:
- View the vector (board) as a ternary number and convert it to its corresponding decimal number.
- Use the computed number as an index into the MT and access the vector stored there.
- The selected vector represents the way the board will look after the move.
- Set board equal to that vector.

Comments

- Very efficient in terms of time but has several disadvantages.
- Lot of space to store the move table.
- Lot of work to specify all the entries in move table.
- Highly error prone as the data is voluminous.
- Poor extensibility
- 3D tic-tac-toe $=3^{27}$ board position to be stored.
- Not intelligent at all.

Approach 2

- Data Structure
- Board: A nine-element vector representing the board: B[1..9]
- Following conventions are used

2	-	indicates blank
3	-	X
5	-	0

- Turn: An integer

1	-	First move
9	-	Last move

Procedures Used

- Make_2 \rightarrow Tries to make valid 2
- Make_2 first tries to play in the center if free and returns 5 (square number).
- If not possible, then it tries the various suitable non corner square and returns square number.
- $\boldsymbol{G o}(\boldsymbol{n}) \leftarrow$ makes a move in square ' n ' which is blank represented by 2.

Procedure - PossWin

- PossWin (P) \rightarrow Returns
- o, if player P cannot win in its next move,
- otherwise the number of square that constitutes a winning move for P .
- Rule
- If PossWin (P) $=\mathrm{o}\{\mathrm{P}$ can not win\} then find whether opponent can win. If so, then block it.

Strategy used by PosWin

- PosWin checks one at a time, for each rows /columns and diagonals as follows.
- If $3 * 3^{*} 2=18$ then player X can win
- else if 5 * 5 * $2=50$ then player O can win
- These procedures are used in the algorithm on the next slide.

Algorithm

- Assumptions
- The first player always uses symbol X.
- There are in all 8 moves in the worst case.
- Computer is represented by C and Human is represented by H .
- Convention used in algorithm on next slide
- If C plays first (Computer plays X, Human plays O) - Odd moves
- If H plays first (Human plays X, Computer plays O) - Even moves
- For the sake of clarity, we use C and H .

Algo - Computer plays first - C plays odd moves

- Move 1: Go (5)
- Move 2: H plays
- Move 3: If $\mathrm{B}[9]$ is blank, then $\mathrm{Go}(9)$ else $\mathrm{Go}(3)$ \{make 2\}
- Move 4: H plays
- Move 5: \{By now computer has played 2 chances\}
- If PossWin(C) then \{won\} Go(PossWin(C))
- else $\{$ block $\boldsymbol{H}\}$ if PossWin(H) then Go(PossWin(H)) else if B[7] is blank then $\mathrm{Go}(7)$ else $\mathrm{Go}(3)$
- Move 6: H plays
- Moves 7 \& 9 :
- If PossWin(C) then \{won\} Go(PossWin(C))
- else $\{$ block $\boldsymbol{H}\}$ if PossWin(H) then $\operatorname{Go}(\operatorname{PossWin}(\mathrm{H}))$ else Go(Anywhere)
- Move 8: H plays

Algo - Human plays first - C plays even moves

- Move 1: H plays
- Move 2: If $\mathrm{B}[5]$ is blank, then $\mathrm{Go}(5)$ else $\mathrm{Go}(1)$
- Move 3: H plays
- Move 4: \{By now H has played 2 chances\}
- If PossWin(H) then \{block $\boldsymbol{H}\}$ Go (PossWin(H))
- else Go (Make_2)
- Move 5: H plays
- Move 6: \{By now both have played 2 chances\}
- If PossWin(C) then \{won\} Go(PossWin(C))
- else \{block $\boldsymbol{H}\}$ if PossWin(H) then $\mathrm{Go}(\operatorname{PossWin}(\mathrm{H}))$ else Go(Make_2)
- Moves 7 \& 9 : H plays
- Move 8: \{By now computer has played 3 chances\}
- If PossWin(C) then \{won\} Go(PossWin(C))
- else $\{$ block $\boldsymbol{H}\}$ if PossWin(H) then $\operatorname{Go}(\operatorname{PossWin}(\mathrm{H}))$ else Go(Anywhere)

Complete Algorithm - Odd moves or even moves for C playing first or second

- Move 1: go (5)
- Move 2: If $\mathrm{B}[5]$ is blank, then $\mathrm{Go}(5)$ else $\mathrm{Go}(1)$
- Move 3: If $\mathrm{B}[9]$ is blank, then $\mathrm{Go}(9)$ else $\mathrm{Go}(3)$ \{make 2\}
- Move 4: \{By now human (playing X) has played 2 chances\} If PossWin(X) then $\{$ block $\boldsymbol{H}\}$ Go (PossWin(X)) else Go (Make_2)
- Move 5: \{By now computer has played 2 chances $\}$ If $\operatorname{PossWin}(X)$ then \{won\} Go(PossWin(X)) else \{block H\} if PossWin(O) then Go(PossWin(O)) else if $\mathrm{B}[7]$ is blank then $\mathrm{Go}(7)$ else Go (3)
- Move 6: \{By now both have played 2 chances\} If $\operatorname{PossWin}(\mathrm{O})$ then \{won\} Go(PossWin(O)) else \{block H\} if PossWin(X) then Go(PossWin(X)) else Go(Make_2)
- Moves 7 \& 9 : \{By now human (playing O) has played 3 chances\} If PossWin(X) then \{won\} Go(PossWin(X)) else \{block $\boldsymbol{H}\}$ if PossWin(O) then Go(PossWin(O)) else Go(Anywhere)
- Move 8: \{By now computer has played 3 chances\} If PossWin(O) then \{won\} Go(PossWin(O)) else \{block \boldsymbol{H} \} if PossWin(X) then Go(PossWin(X)) else Go(Anywhere)

Comments

- Not as efficient as first one in terms of time.
- Several conditions are checked before each move.
- It is memory efficient.
- Easier to understand \& complete strategy has been determined in advance
- Still can not generalize to 3-D.

Approach 3

- Same as approach 2 except for one change in the representation of the board.
- Board is considered to be a magic square of size $3 X_{3}$ with 9 blocks numbered by numbers indicated by magic square.
- This representation makes process of checking for a possible win more simple.

Board Layout - Magic Square

- Board Layout as magic square. Each row, column and diagonals add to 15 .

Magic Square

Strategy for possible win for one player

- Maintain the list of each player's blocks in which he has played.
- Consider each pair of blocks that player owns.
- Compute difference D between 15 and the sum of the two blocks.
- If $\mathrm{D}<\mathrm{o}$ or $\mathrm{D}>9$ then
- these two blocks are not collinear and so can be ignored
- otherwise if the block representing difference is blank (i.e., not in either list) then a move in that block will produce a win.

Working Example of algorithm

- Assume that the following lists are maintained up to $3^{\text {rd }}$ move.
- Consider the magic block shown in slide 18.
- First Player X (Human)

- Second Player O (Computer)

Working - contd..

- Strategy is same as in approach 2
- First check if computer can win.
- If not then check if opponent can win.
- If so, then block it and proceed further.
- Steps involved in the play are:
- First chance, H plays in block numbered as 8
- Next C plays in block numbered as 5
- H plays in block numbered 3
- Now there is a turn of computer.

Working - contd..

- Strategy by computer: Since H has played two turns and C has played only one turn, C checks if H can win or not.
- Compute sum of blocks played by H
- $S=8+3=11$
- Compute D = $15-11=4$
- Block 4 is a winning block for H .
- So block this block and play in block numbered 4.
- The list of C gets updated with block number 4 as follows:
H 83

Contd.

- Assume that H plays in block numbered 6.
- Now it's a turn of C.
- C checks, if C can win as follows:
- Compute sum of blocks played by C
- $\mathrm{S}=5+4=9$
- Compute D = 15-9 = 6
- Block 6 is not free, so C can not win at this turn.
- Now check if H can win.
- Compute sum of new pairs $(8,6)$ and $(3,6)$ from the list of H
- $S=8+6=14$
- Compute D = 15-14 = 1
- Block 1 is not used by either player, so C plays in block numbered as 1

Contd..

- The updated lists at $6^{\text {th }}$ move looks as follows:
- First Player H

8	3	6

- Second Player C

- Assume that now H plays in 2.
- Using same strategy, C checks its pair $(5,1)$ and (4, 1) and finds bock numbered as $9\{15-6=9\}$.
- Block 9 is free, so C plays in 9 and win the game.

Comments

- This program will require more time than two others as
- it has to search a tree representing all possible move sequences before making each move.
- This approach is extensible to handle
-3-dimensional tic-tac-toe.
- games more complicated than tic-tac-toe.

3D Tic Tac Toe (Magic cube)

- All lines parallel to the faces of a cube, and all 4 triagonals sum correctly to 42 defined by

$$
S=m\left(m^{3}+1\right) / 2, \text { where } m=3
$$

- No planar diagonals of outer surfaces sum to 42 . so there are probably no magic squares in the cube.

8	24	10	15	1	26	19	17	6
12	7	23	25	14	3	5	21	16
22	11	9	2	27	13	18	4	20

8	24	10	15	1	26	19	17	6
12	7	23	25	14	3	5	21	16
22	11	9	2	27	13	18	4	20

- Magic Cube has 6 outer and 3 inner and 2 diagonal surfaces
- Outer 6 surfaces are not magic squares as diagonals are not added to 42.
- Inner 5 surfaces are magic square.

